Enrichment and proteomic identification of Cryptosporidium parvum oocyst wall | Parasites & Vectors


  • Platts-Mills JA, Babji S, Bodhidatta L, Gratz J, Haque R, Havt A, et al. Pathogen-specific burdens of community diarrhea in developing countries: a multisite birth cohort study (MAL-ED). Lancet Glob Health. 2015;3:e564-75.

    PubMed PubMed Headquarters Google Scholar

  • W Checkley, Jr White AC, D Jaganath, MJ Arrowood, RM Chalmers, XM Chen et al. An overview of the global burden, novel diagnostics, therapeutics and vaccine targets for cryptosporidium. Lancet Infect Dis. 2015;15:85-94.

    PubMedGoogle Scholar

  • Ryan U, Hijjawi N, Xiao L. Foodborne cryptosporidiosis. Int J Parasitol. 2018;48:1-12.

    PubMedGoogle Scholar

  • Koehler AV, Korhonen PK, Hall RS, Young ND, Wang T, Haydon SR, et al. Use of a bioinformatics-assisted primer design strategy to establish a new nested-PCR-based method for cryptosporidium. Parasite Vectors. 2017;10:509.

    PubMed PubMed Headquarters Google Scholar

  • Ryan U, Zahedi A, Paparini A. cryptosporidium in humans and animals – a one-health approach to prophylaxis. parasite immunol. 2016;38:535-47.

    CAS PubMedGoogle Scholar

  • Ježková J, Limpouchová Z, Prediger J, Holubová N, Sak B, Konečný R, et al. Cryptosporidium myocastoris n.sp. (Apicomplexa: Cryptosporidiidae), the species adapted to the coypu (Myocastor nutrias). microorganisms. 2021;9:813.

    PubMed PubMed Headquarters Google Scholar

  • Villanueva MT. Infectious diseases: deciphering cryptosporidium. Nat Rev Drug Discov. 2017;16:527.

    CAS PubMedGoogle Scholar

  • Lendner M, Daugschies A. cryptosporidium Infections: Molecular Advances. Parasitology. 2014;141:1511-32.

    PubMedGoogle Scholar

  • Swale C, Bougdour A, Gnahoui-David A, Tottey J, Georgeault S, Laurent F et al. Metal-trapped inhibition of pre-mRNA processing activity by CPSF3 controls cryptosporidium Infection. Scientific Transl. Med. 2019. https://doi.org/10.1126/scitranslmed.aax7161.

    PubMedGoogle Scholar

  • Chavez MA, White AC Jr. Novel treatment strategies and drugs under development for cryptosporidiosis. Expert Rev Anti-Infect Ther. 2018;16:655-61.

    CAS PubMedGoogle Scholar

  • Jenkins MB, Eaglesham BS, Anthony LC, Kachlany SC, Bowman DD, Ghiorse WC. Importance of wall structure, macromolecular composition, and surface polymers for survival and transport Cryptosporidium parvum oocysts. Appl Environ Microbiol. 2010;76:1926-34.

    CAS PubMed PubMed CentralGoogle Scholar

  • Petry F. Structural analysis of Cryptosporidium parvum. Microsc Microanal. 2004;10:586-601.

    Also Read :  Microscopy Global Market Report 2022: Rising Focus on Nanotechnology & Regenerative Medicine for Various Chronic Diseases Drives Growth - ResearchAndMarkets.com

    CAS PubMedGoogle Scholar

  • Possenti A, Cherchi S, Bertuccini L, Pozio E, Dubey JP, Spano F. Molecular characterization of a new family of cysteine-rich proteins from Toxoplasma gondii and ultrastructural clues to the localization of the oocyst wall. Int J Parasitol. 2010;40:1639-49.

    CAS PubMedGoogle Scholar

  • Cui Z, Wang R, Huang J, Wang H, Zhao J, Luo N, et al. Cryptosporidiosis caused by Cryptosporidium parvum Subtype IIdA15G1 on a dairy farm in northwest China. Parasite Vectors. 2014;7:529.

    PubMed PubMed Headquarters Google Scholar

  • Brar APS, Sood NK, Kaur P, Singla LD, Sandhu BS, Gupta K, et al. Periurban outbreaks of bovine calf diarrhea in northern India caused by cryptosporidium associated with other enteropathogens. infect epidemic. 2017;145:2717-26.

    CAS PubMedGoogle Scholar

  • Gharpure R, Perez A, Miller AD, Wikswo ME, Silver R, Hlavsa MC. Cryptosporidiosis Outbreaks – United States, 2009-2017. MMWR Morb Mortal Wkly Rep. 2019;68:568-72.

    PubMed PubMed Headquarters Google Scholar

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, et al. Complete genome sequence of apicomplexan, Cryptosporidium parvum. Science. 2004;304:441-5.

    CAS PubMedGoogle Scholar

  • Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, et al. The genome of Cryptosporidium hominis. Nature. 2004;431:1107-12.

    CAS PubMedGoogle Scholar

  • Snelling WJ, Lin Q, Moore JE, Millar BC, Tosini F, Pozio E, et al. Proteomic analysis and protein expression during sporozoite excystation of Cryptosporidium parvum (Coccidia, Apicomplexa). Mol Cell Proteomics. 2007;6:346-55.

    CAS PubMedGoogle Scholar

  • Sanderson SJ, Xia D, Prieto H, Yates J, Heiges M, Kissinger JC, et al. Determination of the protein repertoire of Cryptosporidium parvum sporozoites. proteomics. 2008;8:1398-414.

    CAS PubMed PubMed CentralGoogle Scholar

  • Mauzy MJ, Enomoto S, Lancto CA, Abrahamsen MS, Rutherford MS. That Cryptosporidium parvum Transcriptome during in vitro development. Plus one. 2012;7:e31715.

    CAS PubMed PubMed CentralGoogle Scholar

  • Arrowood MJ, Sterling CR. isolation from cryptosporidium Oocysts and sporozoites using discontinuous sucrose and isopycnic Percoll gradients. J Parasite. 1987;73:314-9.

    Also Read :  Discovery of endocannabinoid gene mutation leads to identification of new, rare pediatric neurological disease

    CAS PubMedGoogle Scholar

  • Rasmussen KR, Larsen NC, Healey MC. Full development of Cryptosporidium parvum in a human endometrial carcinoma cell line. Infect immune. 1993;61:1482-5.

    CAS PubMed PubMed CentralGoogle Scholar

  • Peckova R, Stuart PD, Sak B, Kvetonova D, Kvac M, Foitova I. Statistical comparison of excystation methods in Cryptosporidium parvum oocysts. Vet Parasitol. 2016;230:1-5.

    PubMedGoogle Scholar

  • Harris JR, Petry F. Cryptosporidium parvum: structural components of the oocyst wall. J Parasite. 1999;85:839-49.

    CAS PubMedGoogle Scholar

  • Possenti A, Fratini F, Fantozzi L, Pozio E, Dubey JP, Ponzi M et al. Global proteomic analysis of the oocyst/sporozoite of Toxoplasma gondii shows commitment to a host-independent lifestyle. BMC genomics. 2013;14:183.

    CAS PubMed PubMed CentralGoogle Scholar

  • Niemann M, Wiese S, Mani J, Chanfon A, Jackson C, Meisinger C, et al. Proteome of the mitochondrial outer membrane of Trypanosoma brucei reveals novel factors required for maintenance of mitochondrial morphology. Mol Cell Proteomics. 2013;12:515-28.

    CAS PubMedGoogle Scholar

  • Gene Ontology Consortium. The Gene Ontology Project in 2008. Nucleic Acids Res. 2008;36:D440–4.

    Google Scholar

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for the integration and interpretation of large molecular datasets. nucleic acids res. 2012;40:D109-14.

    CAS PubMedGoogle Scholar

  • Zhang TY, Gao X, Wang DQ, Zhao JX, Zhang N, Li QS, et al. A single-pass type I membrane protein from the apicomplexan parasite Cryptosporidium parvum with nanomolar binding affinity to the host cell surface. microorganisms. 2021;9:1015.

    CAS PubMed PubMed CentralGoogle Scholar

  • Bouzid M, Hunter PR, Chalmers RM, Tyler KM. cryptosporidium pathogenicity and virulence. Clin Microbiol Rev. 2013;26:115-34.

    CAS PubMed PubMed CentralGoogle Scholar

  • Fayer R, Nerad T. Effects of low temperature on the viability of Cryptosporidium parvum oocysts. Appl Environ Microbiol. 1996;62:1431-3.

    CAS PubMed PubMed CentralGoogle Scholar

  • Tu V, Mayor J, Sugi T, Tomita T, Han B, Ma YF, et al. Enrichment and proteomic characterization of the cyst wall from in vitro Toxoplasma gondii cysts. MBio. 2019. https://doi.org/10.1128/mBio.00469-19.

    Also Read :  Wall Street banks' profits slide as economic clouds loom, some beat forecasts

    PubMed PubMed Headquarters Google Scholar

  • Zhou CX, Zhu XQ, Elsheikha HM, He S, Li Q, Zhou DH, et al. Global iTRAQ-based proteomic profiling of Toxoplasma gondii Oocysts during sporulation. J Proteomics. 2016;148:12-9.

    CAS PubMedGoogle Scholar

  • Munoz C, San Francisco J, Gutierrez B, Gonzalez J. Role of the ubiquitin-proteasome systems in the biology and virulence of protozoan parasites. Biomed Res Int. 2015;2015:141526.

    PubMed PubMed Headquarters Google Scholar

  • Shaw MK, He CY, Roos DS, Tilney LG. Proteasome inhibitors block intracellular growth and replication of Toxoplasma gondii. Parasitology. 2000;121:35-47.

    CAS PubMedGoogle Scholar

  • Ndao M, Nath-Chowdhury M, Sajid M, Marcus V, Mashiyama ST, Sakanari J, et al. A cysteine ​​protease inhibitor saves mice from dying Cryptosporidium parvum Infection. Antimicrobials Chemother. 2013;57:6063-73.

    CAS PubMed PubMed CentralGoogle Scholar

  • Tosini F, Agnoli A, Mele R, Gomez Morales MA, Pozio E. A novel modular protein from Cryptosporidium parvum with ricin B and LCCL domains, expressed at the sporozoite invasion stage. Mol Biochem Parasitol. 2004;134:137-47.

    CAS PubMedGoogle Scholar

  • Templeton TJ, Lancto CA, Vigdorovich V, Liu C, London NR, Hadsall KZ, et al. That cryptosporidium Oocyst wall protein is a member of a multigene family and has a homologue in Toxoplasma. Infect immune. 2004;72:980-7.

    CAS PubMed PubMed CentralGoogle Scholar

  • Wiedmer S, Buder U, Bleischwitz S, Kurth M. Distribution and processing of Eimeria nieschulzi OWP13, a new protein of the COWP family. J Eukaryote Microbiol. 2018;65:518-30.

    CAS PubMedGoogle Scholar

  • Spano F, Puri C, Ranucci L, Putignani L, Crisanti A. Cloning of the entire COWP gene from Cryptosporidium parvum and ultrastructural localization of the protein during development of the sexual parasite. Parasitology. 1997;114:427-37.

    CAS PubMedGoogle Scholar

  • Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and associated tools and resources in 2019: Improving support for quantification data. nucleic acids res. 2019;47:D442-50.

    CAS PubMedGoogle Scholar



  • Source link